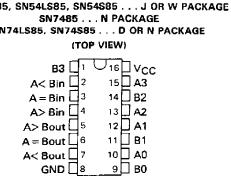
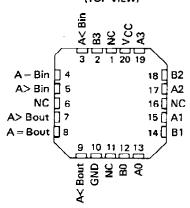
SDLS123

TYPE	TYPICAL	TYPICAL DELAY	SN5485, SN54LS85 SN74
	DISSIPATION	(4-BIT WORDS)	SN74LS85, SN7
′8 5	275 mW	23 ns	
'LS85	52 mW	24 ns	
' \$85	365 mW	11 ns	83


description

٩,


These four-bit magnitude comparators perform comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding A > B, A < B, and A = B inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A = B input. The cascading paths of the '85, 'LS85, and 'S85 are implemented with only a two-gate-level delay to reduce overall comparison times for long words. An alternate method of cascading which further reduces the comparison time is shown in the typical application data.

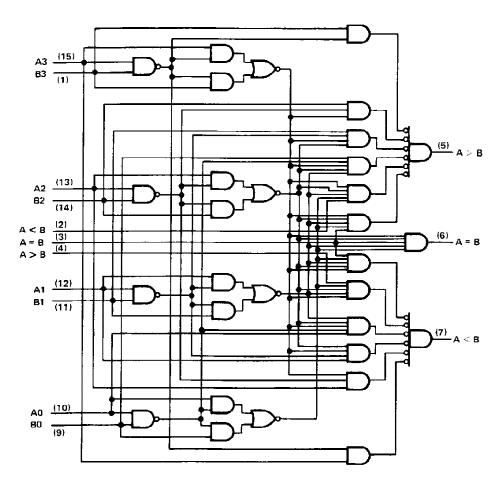
SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

MARCH 1974 - REVISED MARCH 1988

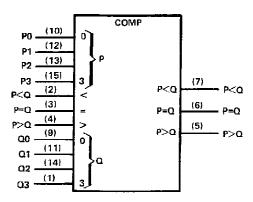
SN54LS85, SN54S85...FK PACKAGE (TOP VIEW)

NC - No internal connection

		PARING PUTS			CASCADING			OUTPUTS	
A3, B3	A2, B2	A1, B1	A0, 80	A > 8	A < 8	A = B	A > B	A < B	A = B
A3 > B3	x	X	x	X	x	x	н	L	Ļ
A3 < B3	X	X	X	x	х	х	ι ι	н	L
A3 = B3	A2 > 82	×	×	x	×	x	н	L	L
A3 = B3	A2 < B2	×	x	×	x	×	ι ι	н	L
A3 = B2	A2 = 82	A1 > B1	x	x	x	x	н	L	L
A3 = B3	A2 = 82	A1 < B1	X	x	x	x	L	н	Ļ
A2 = B3	A2 = B2	A1 = 81	A0 > 80	x	х	×	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	x	x	x	L	н	L
A3 = B3	A2 = B2	A1 = 81	AO = BO	н	L	L	н	L	L
A3 → B3	A2 = B2	A1 = B1	A0 = 80	L	н	L	ί ι	н	L
A3 ⇒ B3	A2 = 82	A1 = B1	AO = 80	x	×	н	L L	L	н
A3 = 83	A2 = B2	A1 = B1	AO = BO	н	н	L	ι	L	L
A3 = B3	A2 = B2	A1 = B1	AO = BO	L	Ł	L	н	н	L

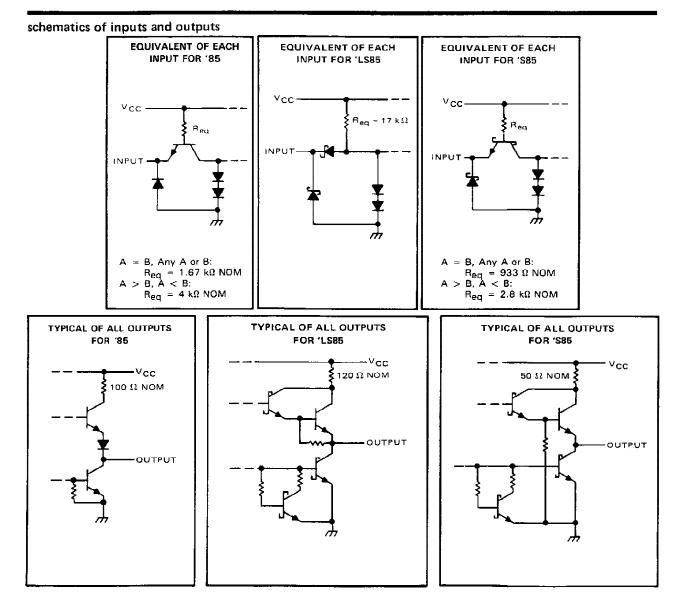

FUNCTION TABLE

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



SN5485, SN54LS85, SN54S85, SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

logic diagrams (positive logic)


logic symbol[†]

 $^\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.$

SN5485, SN54LS85, SN54S85, SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54' SN545'	SN54LS'	SN74' SN74S'	SN74LS'	UNIT
Supply voltage, V _{CC} (see Note 1)	7	7	7	7	V
Input voltage	5.5	7	5.5	7	V
Interemitter voltage (see Note 2)	5.5		5.5 *		V
Operating free-air temperature range	- 55	to 125	-0	to 70	°C
Storage temperature range	- 65	to 150	- 65	to 150	°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

ł

2. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies to each A input in conjunction with its respective B input of the '85 and 'S85.

SN5485, SN7485 **4-BIT MAGNITUDE COMPARATORS**

recommended operating conditions

		SN5485	;		SN7485	5	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5,25	V
High-level output current, IOH			400			-400	μA
Low-level output current, IOL			16			16	πА
Operating free-air temperature, TA	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	1	TEST	CONDITIONS [†]		MIN	түр‡	мах	UNIT
Vін	High-level input voltage					2			V
VIL	Low-level input voltage							0.8	V
Vik	Input clamp voltage	·	V _{CC} = MIN,	4 ₁ = -1:	2 mA			-1.5	V
Vон	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 I _{OH} = -		2.4	3.4		v
Vol	Low-level output voltage		V _{CC} = MIN, V _{1L} = 0.8 V,	V _{IH} = 2 I _{OL} = 1			0.2	0.4	v
-lj	Input current at maximum i	nput voltage	VCC = MAX,	Vj = 5.8	5 V			1	mΑ
ЧH	High-level input current	A < B, A > B inputs all other inputs	V _{CC} = MAX,	V _I = 2.4	i v			40 120	μA
ΫL	Low-level input current	A < B, A > B inputs all other inputs	V _{CC} = MAX,	V _I = 0.4	I V			-1.6 -4.8	mA
los	Short-circuit output current	3	V _{CC} = MAX, V _C	.=0	SN5485 SN7485	-20		-55	mA
	Supply current		V _{CC} = MAX, See	Note 4	an 7400	-18	55	-55 88	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. [§]Not more than one output should be shorted at a time.

NOTE 4: t_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER		TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN T	YP	MAX	יואני
			1			7		
		A < B, $A > B$	2			12		
^t PLH	Any A or B data input		3			17	26	пs
		A = B	4			23	35	
			1	1		11		
		A < B, $A > B$	2			15		
^t PH L	Any A or B data input		3	C _L = 15 pF, R ₁ = 400 Ω,		20	30	ns
		A = B	4	See Note 5		20	30	
tpLH	A < B or A ≖ B	A > B	1	Jee Note 5		7	11	រាន
tPHL	A < 8 or A = B	A > B	t			11	17	រាទ
tpLH	A = B	A = B	2			13	20	Π5
tPHL.	A = 8	A = B	2			11	17	ns
tPLH	A > B or A = B	A < 8	1			7	11	ns
^t PHL	A > B or A = 8	A < 8	1	1		11	17	ns

 t_{PLH} = propagation delay time, low-to-high-level output

tpHL - propagation delay time, high-to-low-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

recommended operating conditions

÷,

	S	N54LS	35	S	N74LS	35	
	MIN	NOM	мах	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μA
Low-level output current, IQL			4			8	mΑ
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			TEAT OOL	initionat	S	N54LSE	35	S	N74LS8	35	
	РАНА	METER	TESTCOM	DITIONS	MIN	TYP‡	MAX	MIN	түр‡	ΜΑΧ	UNIT
∨ін	High-level input	voltage			2			2			V
VIL	Low-level input	voltage					0.7			0.7	V
Viĸ	Input clamp vol	tage	V _{CC} = MIN,	l ₁ =18 mA			-1.5			-1.5	V
∨он	High-level output	utvoltage	-	V _{IH} = 2 V, t _{OH} =400 μA	2.5	3.4		2.7	3.4		v
	Low lovel cuto	t voltage	V _{CC} = MIN, V _{IH} = 2 V,	l _{OL} = 4 mA		0.25	0.4		0.25	0.4	
VOL	Low-level outpu	n vonage	Vil = Vil max	I _{OL} = 8 mA			_		0.35	0.5	
	Input current	A < B, A > B inputs		11 7 14			0.1			0.1	
Ц	at maximum input voltage	all other inputs	V _{CC} = MAX,	V _I = 7 V			0.3			0.3	- mA
	High-level	A < B, A > B inputs	V Max	11 - 2 7 11			20			20	
ЧН	input current	all other inputs	V _{CC} = MAX,	V _F = 2.7 V			60			60	μA
	Low-level	A < B, A > B inputs	V _{CC} = MAX,	V ₁ = 0.4 V			-0.4			-0.4	mA
115	input current	all other inputs	VCC - MAA,	v] = 0.4 v			-1.2			-1.2	
los	Short-circuit ou	tput current §	V _{CC} = MAX		-20		-100	-20		-100	mA
1cc	Supply current		V _{CC} = MAX,	See Note 4		10.4	20		10.4	20	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25[°]C.

m \$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 4: ICC is measured with outputs open, A = 6 grounded, and all other inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FROM INPUT	ΤΟ ΟυΤΡυΤ	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	רואט
			1		14		
		A < B, A > B	2		19]
^t PLH	Any A or B data input		3		24	36	ns
		A = 8	4		27	45	
			1		11]
		A < B, A > B	2		15		ns
^t PHL	Any A or B data input		3	$C_{L} = 15 pF$	20	30	
		A = B	4	$R_L = 2k\Omega$,	23	45	
tPLH	A < B or A = B	A > B	1	See Note 5	14	22	ns
tPHL	A < B or A = B	A > B	1		11	17	ns
tPLH	A = 8	A = 8	2		13	20	ns
tPHL	A = B	A = B	2		13	26	ns
TPLH	A > B or A = B	A < B	1		14	22	ns
tPHL	A > B or A ∽ B	A < B	1		11	17	ns

 \P_{tpLH} = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

SN54S85, SN74S85 **4-BIT MAGNITUDE COMPARATORS**

recommended operating conditions

		SN5458	5		SN7458	5	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mΑ
Low-level output current, IOL			20			20	mΑ
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMET	ER	TES	ST CONDITION	s†	MIN	ТҮР‡	МАХ	UNIT
VIH	High-level input voltage					2			V
VIL	Low-level input voltage							0.8	V
VIK	Input clamp voltage		VCC = MIN,	I _I = -18 mA				-1.2	V
			V _{CC} - MIN,	VIH = 2 V,	SN54S85	2.5	3.4		
Vон	High-level output voltage		VIL = 0.8 V,	^I OH = -1 mA	SN 74585	2.7	3.4		V
			V _{CC} = MIN,	V _{IH} = 2 V,	•			0.5	
VOL	Low-level output voltage		VIL = 0.8 V,	IOL = 20 mA				0.5	V
Π ₁	Input current at maximum in	put voltage	V _{CC} = MAX,	V! = 5.5 V	_	1		1	mA
1		A < B, A > B inputs					· · · · ·	50	
μH	High-level input current	all other inputs	V _{CC} = MAX,	VI = 2.7 V				150	μA
		A < B, A > B inputs	14	N 05.1		1		-2	
11	Low-level input current	all other inputs	Vcc = MAX,	vi=0.5 v				-6	mA
los	Short-circuit output current §		Vcc = MAX			40		-100	mA
			V _{CC} = MAX,	See Note 4			73	115	
'cc	Supply current		V _{CC} = MAX, See Note 4	T _A = 125°C,	SN54S85W			110	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. \$Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25° C

PARAMETER¶	FROM	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	רואט
			1		5		
		A < 8, A > B	2		7.5		1
¢P∟H	Any A or B data input		3		10.5	16	ns
		A = B	4		12	18	1
			1		5.5		r—
		A < 8, A > 8	2	0 45 5	7		ns
TPHL	Any A or B data input		3	C _L = 15 pF,	11	16.5	
		A = B	4	$R_{L} = 280 \Omega$	11	16.5]
tPLH	A < B or A = B	A > B	1	See Note 5	5	7.5	ns
TPHL	A < B or A = B	A > B	1		5.5	8.5	ns
tPLH	A = B	A = B	2		7	10.5	ns
^t PHL	A = B	A = 8	2		5	7.5	กร
трсн	A > B or A = B	A < 8	1		5	7.5	ns
^{\$} PHL	A > B or A = B	A < B	1		5.5	8.5	nş

ftpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

TYPICAL APPLICATION DATA

INPUTS

(MSB) 823 A23

2

B22

A22

B21

A21

B3

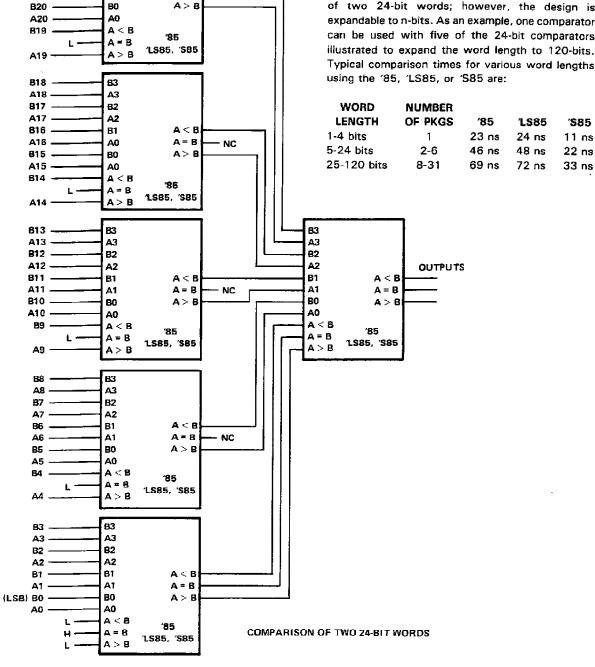
A3

B2

A2

B1

A1


A < B

A = B

NC

COMPARISON OF TWO N-BIT WORDS

This application demonstrates how these magnitude comparators can be cascaded to compare longer words. The example illustrated shows the comparison of two 24-bit words; however, the design is expandable to n-bits. As an example, one comparator can be used with five of the 24-bit comparators illustrated to expand the word length to 120-bits. Typical comparison times for various word lengths

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated