# [LAB] FA: Elektor abril 1983 - Componentes

| Resistencias |          |                               |       |  |  |
|--------------|----------|-------------------------------|-------|--|--|
| Valor        | Cantidad | Referencia                    | Check |  |  |
| 4k7 Ω        | 7        | R1, R3, R6, R8, R12, R13, R14 | -     |  |  |
| 22 Ω         | 1        | R2                            | -     |  |  |
| ver texto    | 2        | R4, R16                       | -     |  |  |
| 10 kΩ        | 1        | R5                            | -     |  |  |
| 1 kΩ         | 2        | R7, R10                       | -     |  |  |
| 2k2 Ω        | 1        | R9                            | -     |  |  |
| 470 Ω, 1 W   | 1        | R11                           | -     |  |  |
| 15 kΩ        | 1        | R15                           | -     |  |  |
| 10 Ω, 1 W    | 1        | R17                           | -     |  |  |
| 0,22 Ω, 3 W  | 4        | R18, R19, R20, (R27)          | -     |  |  |
| 4k7 Ω, 1 w   | 1        | R22                           | -     |  |  |
| 47 Ω         | 2        | R23, R24                      | -     |  |  |
| 5k6 Ω        | 1        | R25                           | -     |  |  |
| 270k Ω       | 1        | R26                           | -     |  |  |
| pot 50 kΩ    | 1        | P1                            | -     |  |  |
| pot 1 kΩ     | 1        | P2                            | -     |  |  |
| pot ¿ Ω?     | 1        | (Trazo fino V)                |       |  |  |
| ajus 2k5 Ω   | 1        | Р3                            |       |  |  |
| ajus 250 kΩ  | 1        | P4                            | -     |  |  |

| -              |          |            |       |  |  |  |
|----------------|----------|------------|-------|--|--|--|
| Condensadores  |          |            |       |  |  |  |
| Valor          | Cantidad | Referencia | Check |  |  |  |
| 100 μF, 25 V   | 2        | C1, C2     | -     |  |  |  |
| 100 μF, 10 V   | 1        | C3         | -     |  |  |  |
| 100 pF         | 1        | C4         | -     |  |  |  |
| 10 μF, 25 V    | 1        | C5         | -     |  |  |  |
| 1 nF           | 1        | C6         | -     |  |  |  |
| 100 pF         | 1        | C7         | -     |  |  |  |
| 56 pF          | 1        | C8         | -     |  |  |  |
| 47 μF, 250 V   | 1        | C9         | -     |  |  |  |
| 4700 μF, 100 V | 1        | C10        | 1     |  |  |  |
| 820 nF         | 1        | C11        | -     |  |  |  |
| 100 nF         | 1        | C12        | -     |  |  |  |

| 100 111                                |    | U 1 2  | <u> </u> |       |         |       |  |
|----------------------------------------|----|--------|----------|-------|---------|-------|--|
| Semiconductores                        |    |        |          |       |         |       |  |
| Valor                                  | Ca | ntidad | R        | efere | encia   | Check |  |
| puente<br>B40C1000                     |    | 1      | В1       |       |         | •     |  |
| puente<br>B125C5000/330<br>,<br>GBU808 | 0  | 1      | В2       |       |         | •     |  |
| 1N4001                                 |    | 2      | D1,      | D8    |         | -     |  |
| 1N4148                                 |    | 4      | D2,      | D3,   | D4, D5  | -     |  |
| zener 3V3 400 m                        | ١W | 1      | D6       |       |         | -     |  |
| LED rojo                               |    | 1      | D7       |       |         | -     |  |
| BC559C                                 |    | 1      | T1       |       |         | -     |  |
| BD651                                  |    | 1      | T2       |       |         | -     |  |
| 2N3442                                 |    | 4      | T3,      | T4, T | 5, (T6) | -     |  |
| 723                                    |    | 1      | IC1      |       |         | -     |  |
| 741                                    |    | 2      | IC2      | , IC3 |         | -     |  |
| Varios                                 |    |        |          |       |         |       |  |
| Valor                                  |    | Cantic | lad      | Refe  | rencia  | Check |  |
| Interruptor 2polos2p                   |    | 2      |          | S1. ( | 52)     | _     |  |

| Interruptor 1polo2p    | 1 | S1, (S2) | - |
|------------------------|---|----------|---|
| trafo 2 x 12 V, 400 mA | 1 | Tr1      | - |
| trafo 33 V, 4 A        | 1 | Tr2      | • |
| portafusible           | 1 | -        | - |
| fusible de 1A          | 1 | F        | - |
| disipadores dobles     | 2 | -        | - |
| bornas bananas         | 5 | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
| -                      | - | -        | - |
|                        |   |          |   |

## **Apuntes**

### • Comparación de un transformador estándar con uno toroidal

- Ventajas del transformador toroidal
  - 1. Son compactos y ligeros, ocupan menos espacio y pesan menos que los convencionales.
  - 2. Ofrecen alta eficiencia, típicamente entre 90-95%, con pérdidas de energía muy bajas.
  - 3. Producen menos ruido y vibración, lo que los hace ideales para aplicaciones sensibles al sonido.
  - 4. Tienen un campo magnético disperso muy bajo, reduciendo interferencias electromagnéticas en circuitos cercanos.
- o Inconvenientes del transformador toroidal
  - 1. Su fabricación es más compleja y costosa.
  - 2. Requieren gestión cuidadosa de la corriente de entrada alta en el arranque para evitar daños o disparos en dispositivos.
  - 3. Su potencia nominal suele estar limitada a unos 25 kVA para evitar problemas de sobretensión.
- Ventajas del transformador estándar (EI)
  - 1. Su diseño y construcción son más sencillos y económicos.
  - 2. Adecuados para aplicaciones de alta potencia y grandes volúmenes de producción.
  - 3. La corriente de arranque es menor gracias a espacios de aire en el núcleo, facilitando la estabilidad al encendido.
  - 4. Son robustos y más tolerantes a condiciones eléctricas adversas.
- o Inconvenientes del transformador estándar
  - 1. Más grandes y pesados, ocupan más espacio.
  - 2. Menor eficiencia (<90%) con más pérdidas energéticas.
  - 3. Generan más ruido y vibración durante su funcionamiento.
  - 4. Tienen un campo magnético disperso más alto, pudiendo causar interferencias en circuitos sensibles.
- o En resumen, el transformador toroidal es preferible cuando el tamaño reducido, la eficiencia alta y la reducción de ruido e interferencias son prioridades, mientras que el transformador estándar es ideal para aplicaciones de alta potencia, bajo costo y situaciones donde el tamaño no es crítico.
- Trafo toroidal: IA Perplexity
  - ∘ Un transformador toroidal de 300 VA con secundario de 48 V puede suministrar aproximadamente 6,25 A de corriente máxima en el secundario, calculado como potencia dividida por voltaje ( $P = V \times I$ ).
  - Cálculo básico
    - La corriente nominal se obtiene dividiendo la potencia aparente (300 VA) por la tensión del secundario:  $I = 300/48 \approx 6,25 \text{ A}$ .
    - Esta fórmula se aplica a transformadores toroidales estándar, asumiendo un factor de potencia

cercano a 1 en cargas resistivas.

#### Consideraciones prácticas

- En configuraciones reales de 2 × 24 V (serie para 48 V), se especifican corrientes de 6 A o 6,25 A por devanado.
- La corriente máxima depende de la carga, temperatura (clase A, hasta 105 °C) y regulación (±5%), pudiendo reducirse en sobrecargas para evitar sobrecalentamiento.
- Youtube: Transformador toroidal, cómo calcular el voltaje DC simétrico/AC
- Elección del trafo para una FA de laboratorio. Para una fuente de alimentación lineal de laboratorio, el transformador toroidal es más recomendable que el estándar (El o de armadura F), gracias a su mayor eficiencia, menor generación de ruido electromagnético y diseño más compacto.

#### Ventajas del toroidal

- 1. Mayor rendimiento energético (hasta >90%), con menores pérdidas por calor y corrientes de Foucault, ideal para mantener estabilidad en mediciones precisas de laboratorio.
- 2. Bajo nivel de interferencia electromagnética y vibración silenciosa, lo que reduce el rizado y protege circuitos sensibles como osciloscopios o reguladores lineales.
- 3. Tamaño y peso reducidos, facilitando la integración en bancadas de trabajo compactas.

#### Desventajas y consideraciones

- Los transformadores estándar son más económicos y fáciles de conseguir, pero generan más calor y ruido, lo que puede afectar la precisión en entornos de laboratorio.
- Asegúrarse de seleccionar un toroidal con devanados de cobre separados y sobredimensionado para la corriente (ej. 20-50% extra) para evitar saturación.
- En diseños DIY, verificar la tensión RMS y pico para rectificadores como el GBJ5010, priorizando aislamiento galvánico.

#### o Información adicional

- https://www.hispavila.com/fuentes-de-alimentacion-laboratorio/
- https://es.custom-magnetics.com/products/toroidal-transformer.html
- https://www.zx-ele.com/es/new/toroidal-transformers-guide/
- https://maykolrey.com/electronica-avanzada/fuente-alimentacion-lineal
- https://opcionrenovable.com/2025/05/07/porque-es-mejor-un-transformador-toroidal/
- https://www.hispavila.com/leccion-03-fuentes-de-alimentacion/
- https://www.ai-futureschool.com/es/electrotecnia/transformadores-toroidales-eficiencia-superior.php
- https://www.youtube.com/watch?v=LkQnccj-ct0 Vídeo
- https://foros.doctorproaudio.com/showthread.php?6071-Qu%C3%A9-transformador-favorece-el-rendim iento-de-un-amplificador
- https://www.profetolocka.com.ar/2021/02/15/fuentes-de-alimentacion-lineales/
- Transistores T2 a T5: Deben poder soportar V<sub>CE</sub> = Tensión máxima de salida de la fuente. Por ello se recomienda el doble. Así para una fuente de 60 V buscaremos transistores de V<sub>CE MAX</sub> = 120 V.

From

https://euloxio.myds.me/dokuwiki/ - Euloxio wiki

Permanent link:

https://euloxio.myds.me/dokuwiki/doku.php/doc:tec:lab:fa:elektor83\_compo:inicio?rev=1764771220

Last update: 2025/12/03 15:13

