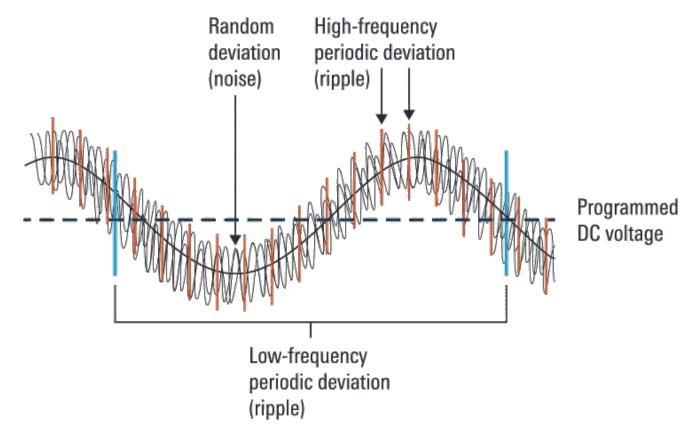
2025/12/01 04:27 1/2 [Laboratorio] FA: Rizado


[Laboratorio] FA: Rizado

Nivel de rizado y ruido

Los circuitos electrónicos avanzados y complejos son muy sensibles a las variaciones de tensión en las líneas de alimentación. Para reducir al mínimo las interferencias cuando se suministra potencia a los dispositivos examinados, las fuentes de alimentación deben proporcionar tensiones y corrientes de salida sumamente estables. En el caso ideal, una salida no presenta ninguna variación de tensión. En la práctica, dos tipos de variación pueden afectar al circuito o el dispositivo: variaciones periódicas (rizado) y variaciones aleatorias (ruido), que se denominan también desviaciones periódicas y erráticas (PaRD). Las fuentes de alimentación lineales presentan un rizado de alta frecuencia considerablemente inferior en comparación con las fuentes conmutadas.

Las fuentes de alimentación para usos especiales y algunas fuentes básicas utilizan la regulación de tensión lineal para reducir al mínimo el ruido y el rizado residual.

Ripple and noise

El diseño lineal de las etapas de salida permite suministrar tensión con pocas interferencias a dispositivos sensibles como los semiconductores complejos. Los valores bajos de rizado y ruido son también altamente recomendables para el desarrollo de amplificadores de potencia y circuitos MMIC.

Factor de rizado

• **Factor de rizado**. Se define como la relación porcentual entre el voltaje de rizado (ondulación o variación periódica superpuesta) y el valor máximo de la salida de la fuente:

$$F_{R}(\%) = \frac{\left(Vpp_{rizado} \times 100\right)}{Vsalida}$$

• Importancia y Control

- Un factor de rizado bajo es crucial para evitar interferencias, errores de medición, o problemas en circuitos sensibles alimentados por la fuente.
- El rizado se controla mediante filtros LC de salida, así como eligiendo una frecuencia de conmutación suficientemente alta para que el filtro sea eficiente y compacto.

Medición

- Para su medición se utiliza un osciloscopio con la punta directamente en el terminal de salida, filtrando además el ancho de banda a 20 MHz para evitar capturar ruido ambiente y obtener valores precisos del rizado pico a pico.
- Lo mediremos con diferentes corrientes de salida. El peor de los casos ocurrirá, en teoría, con la corriente de salida más alta.

Valores Típicos

- Fuentes conmutadas de laboratorio de alta calidad pueden tener un rizado menor al 1% de la salida, y a menudo los datasheets suministran el dato en milivoltios pico a pico (10-50 mVpp).
- En fuentes económicas o de menor calidad, el rizado puede ser mayor, aunque casi siempre se mantiene por debajo del 1% para cumplir con requisitos de aplicaciones electrónicas sensibles.
- Se considera un factor de rizado aceptable entre un 7% y un 10%.
- Entre un 4% y un 7% se considera que el factor de rizado es bueno.
- Por debajo del 4% se considera muy bueno.

• Ejemplos con bombillas de coche

Carga	Parámetros	Fuente 1 (c	onmutada)	Fuente 2 (lineal)
1 x (H7 12W 55W)	V salida	10,4 V		10,4 V
-	I salida	3,77 A		3,77 A
-	Vpp rizado	180 mVpp		30 mVpp
-	Factor de rizado	1,73 %		0,29 %
2 serie x (H7 12W 55W)	V salida	19 V	24 V	19 V
-	I salida	3,51 A	3,983 A	3,51 A
-	Vpp rizado	230 mVpp	250 mVpp	30 mVpp
-	Factor de rizado	1,21 %	1,05 %	0,15 %

Consulta

Páginas

1. Rizado (Wikipedia)

Vídeos

- 1. Reducir Tensión y Factor de rizado de mi fuente de alimentación
- 2. Medir Ripple de Fuente SMPS vs Lineal, en vacío
- 3. Como eliminar ruido eléctrico en una fuente ATX de PC
- 4. Reducción de ruido en fuentes conmutadas
- 5. Reducir Tensión y Factor de rizado de mi fuente de alimentación
- 6. Como reducir el ruido de una fuente dc_dc regulable para mejorar las mediciones BWL VS FEMI
- 7. ¿Sirve este Filtro para cualquier circuito? | Test Ripple en DCDC con Osciloscopio

From:

https://euloxio.myds.me/dokuwiki/ - Euloxio wiki

Permanent link:

https://euloxio.myds.me/dokuwiki/doku.php/doc:tec:lab:fa:pmt rizado:inicio

Last update: 2025/12/01 03:50

